probit - significado y definición. Qué es probit
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es probit - definición

MATHEMATICAL FUNCTION, INVERSE OF ERROR FUNCTION
Probit function
  • CDF]] of the [[normal distribution]]), comparing <math>\operatorname{logit}(x)</math> vs. <math>\Phi^{-1}(x)/\sqrt{\frac{\pi}{8}}</math>, which makes the slopes the same at the origin.
  • Plot of probit function

probit         
['pr?b?t]
¦ noun Statistics a unit of probability based on deviation from the mean of a standard distribution.
Origin
1930s: from prob(ability un)it.
Probit         
In probability theory and statistics, the probit function is the quantile function associated with the standard normal distribution. It has applications in data analysis and machine learning, in particular exploratory statistical graphics and specialized regression modeling of binary response variables.
Probit model         
STATISTICAL REGRESSION WHERE THE DEPENDENT VARIABLE CAN TAKE ONLY TWO VALUES, TO ESTIMATE THE PROBABILITY THAT AN OBSERVATION WITH PARTICULAR CHARACTERISTICS WILL FALL INTO ONE OF THE CATEGORIES
Probit analysis; Probit regression
In statistics, a probit model is a type of regression where the dependent variable can take only two values, for example married or not married. The word is a portmanteau, coming from probability + unit.

Wikipedia

Probit

In probability theory and statistics, the probit function is the quantile function associated with the standard normal distribution. It has applications in data analysis and machine learning, in particular exploratory statistical graphics and specialized regression modeling of binary response variables.

Mathematically, the probit is the inverse of the cumulative distribution function of the standard normal distribution, which is denoted as Φ ( z ) {\displaystyle \Phi (z)} , so the probit is defined as

probit ( p ) = Φ 1 ( p ) for p ( 0 , 1 ) {\displaystyle \operatorname {probit} (p)=\Phi ^{-1}(p)\quad {\text{for}}\quad p\in (0,1)} .

Largely because of the central limit theorem, the standard normal distribution plays a fundamental role in probability theory and statistics. If we consider the familiar fact that the standard normal distribution places 95% of probability between −1.96 and 1.96, and is symmetric around zero, it follows that

Φ ( 1.96 ) = 0.025 = 1 Φ ( 1.96 ) . {\displaystyle \Phi (-1.96)=0.025=1-\Phi (1.96).\,\!}

The probit function gives the 'inverse' computation, generating a value of a standard normal random variable, associated with specified cumulative probability. Continuing the example,

probit ( 0.025 ) = 1.96 = probit ( 0.975 ) {\displaystyle \operatorname {probit} (0.025)=-1.96=-\operatorname {probit} (0.975)} .

In general,

Φ ( probit ( p ) ) = p {\displaystyle \Phi (\operatorname {probit} (p))=p}
and
probit ( Φ ( z ) ) = z . {\displaystyle \operatorname {probit} (\Phi (z))=z.}